

Simplicity and minimalism in
software development

Introduction

● My name is Mattias Sundblad, I have been working
as a software developer since 2006.

● I have worked for large corporations, small start-
ups and non-profit organisations.

● First started working for a non-profit organisation in
2010. Since then, I have been both employed and
worked as a volunteer at various times.

● I used to work mostly with Java, Python and
Django.

Examples of projects

● Webshop, still in use.
● Previous version of the main website
● Various systems used internally

Involvement in the Picolisp
community

● Involved for around 5 years
● Provided Swedish localisation, translations
● Wrote manuals and documentation
● Regular visitor in community IRC channel,

#picolisp on Freenode

Picolisp?

● A language in the Lisp family of programming
languages. Examples of other members:
Common Lisp, Emacs Lisp, Clojure.

● Picolisp was created by Alexander Burger and
has been in production use since 1988.

● Implements a Lisp language on top of a simple
virtual machine architecture.

● Runs on 32- and 64- bit Linux/ BSD, Android.
Intel and ARM CPU

Discerning features of Picolisp

● Simplicity.
● Expressiveness.
● A language and a complete programming

system. Very few external dependencies.
● An interpreted Lisp. No compiler involved. The

code you write is the code that runs.
● Efficient, both in terms of machine resources

and programmer effort.

Writing Picolisp applications

● The system comes with an HTML- based GUI library.
Applications are accessed through a web browser.

● Database functionality is included in the language. No
need to leave Lisp to deal with PostgreSQL, MySQL etc.

● HTTP server included. No need to setup and configure
Nginx, Apache etc.

● REPL included. Enables a very efficient development style
● Applications are usually very small. The code ends up in

Kilobytes. More on that later.

A real life example

● A system to handle donations in testaments.
● First a Lotus Notes application, then migrated

to a solution written in Python/ Django.
● When new functionality was requested, a new

version was written in Picolisp.
● Now incorporated in a unified application

platform.

Result of re-writing in Picolisp

● Size of Django version: 3.4 Mb, spread out over 6
directories and 68 files. Not counting external
dependencies.

● Size of Picolisp version: 92 Kilobytes in 1 directory and
14 files. Provides more functionality than the old version.

● The server no longer needs Nginx, uWSGI, PostgreSQL.
● Runs on inexpensive Linux VPS with 5 Gb storage and

256 Mb RAM. Plenty of free space even with this
configuration.

Current production database

● Database holds information about donors, legal
contacts, payments and prospective donors.

● In total 1009 different objects.
● Size on disk: 1.1 Mb (initial version). After layout

optimisation 920 Kb.
● Two nightly backup routines. One copying the entire

set of database files, the second one dumps the data
in CSV format and e-mails a compressed archive.

● Size of compressed archive: 42 Kb.

Benefits of minimalism

● Easy to get started, to study the problem at hand
and learn things about the task while writing code.

● Users learn new things while using the
applications. A Kilobyte sized program can easily
be re-written to fit evolving requirements.

● Fewer dependencies. Your program is not in the
hands of others through external dependencies.

● Easier, quicker and cheaper. Both when it comes to
running the server, handling backups etc.

Benefits of simplicity

● Possible to understand the entire system.
● Less energy spent thinking about the tools in use,

more about the actual task at hand.
● No difference between production and development

environments any more.
● No context switching. Same language all the way from

GUI, through app server, down to database level.
● A simple system can be used to create a solution that

fits the problem. Not the other way around.

Minimalism and simplicity – why
bother? It is 2018 now!

● Storage and RAM is virtually unlimited. What is the point
of caring whether the application is 300 Kb or 300 Mb?

● Yes, computers can store and handle almost unlimited
amounts of code today. But what about you?

● New applications can be constructed from existing parts
already. Why bother writing things yourself?

● Learning and evolving. You will get better, and this is
something that does not go away. It is an effort, but an
effort well worth it. Besides, there really is not that much
code to write in Picolisp.

Some elephants in the room

● "Lisp has all the visual appeal of oatmeal with fingernail
clippings mixed in." ~ Larry Wall

● Oh really.. well, well, well --> “perl -e '$_=`perl
-v`;while(/\d\,(\s\x4c[^\n]+)/){print$1}'”

● Big risk depending on technology X, where technology X
== “Thing I have never heard of”

● Learning new technologies take time, and I need to solve
problem Y NOW!!

● If this is such a great thing, how come it is not in use by
everyone?

Thank you!

Mattias Sundblad, mattias@inogu.se

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

